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• Two types of MCI-PCF-Kdoc models and
the Kow-Kdoc models were developed.

• Both MCI-PCF-Kdoc models exhibited
better fit than the Kow-Kdoc models.

• The Aldrich HA model showed higher
pertinence to the DOM nonspecific
MCI-PCF-Kdoc model.

• Both MCI-PCF-Kdoc models were sensi-
tive to the robust parameters.

• Both MCI-PCF-Kdoc models were not al-
tered with the dipole moment.
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The binding constant (Kdoc) of organic pollutants (OPs)with dissolved organicmatter (DOM) is an important pa-
rameter in determining the partitioning of OPs in the aquatic environment.Most estimationmodels have focused
on calculating the Kdoc of a specific group of OPs but failed to obtain Kdoc values of different OPs effectively over
the last three decades. In this study, we attempted to build a general-applicable Kdoc model based on various or-
ganic compounds' Kdoc values from the literature since 1973. Twomultiple linear regressionmodels, a DOMnon-
specific model and an Aldrich HA model, were developed based on two solid and easy to access parameters—
molecular connectivity indices (MCI) and polarity correction factors (PCF). In addition, the models' correspond-
ing Kow-Kdoc models, which were mostly used in previous model studies, were developed for comparison. The
adjusted determining coefficient (adj-R2) and standard error of the estimate (SEE) of the DOM nonspecific
MCI-PCF-Kdoc model were 0.815 and 0.579, respectively, whereas the adj-R2 and SEE for the MCI-PCF-Kdoc

model of Aldrich HA reached 0.907 and 0.438, respectively. The Aldrich HA model showed higher pertinence
to the nonspecific model. Furthermore, both models exhibited better fit than the Kow-Kdoc models. The dipole
momentmodification attempts did not significantly improve eitherMCI-PCF-Kdocmodels; hence, the twomodels
were not alteredwith the dipolemoment. The robustness tests by a Jackknifedmethod showed that the twoMCI-
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PCF-Kdoc models exhibited higher robustness than the Kow-Kdoc. Of all of the OPs, the phenols contributed the
most to their robustness. Furthermore, a sensitivity analysis showed that the twoMCI-PCF-Kdocmodelswere sen-
sitive to the robust parameters.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Organic pollutants (OPs) are a series of organic materials that are
harmful or potentially harmful to humans or the eco-system. The inter-
action between OPs and dissolved organic matters (DOMs) is of great
concern because it helps to elucidate the environmental fate of OPs,
such as their transport, transfer, and adsorption in water bodies (Cho
et al., 2002; Laor and Rebhun, 1997). Generally, DOMs are believed to
increase the solubility of certain OPs due to the formation of DOM-OP
colloids, and hence, affect the partitioning of OPs in groundwater, pore
water and sediments (Backhus and Gschwend, 1990; Johnson and
Amy, 1995).Many studies focus on the DOM's effect on the bioavailabil-
ity of OPs. Agnola et al. (1981) reported that the presence of DOM can
reduce atrazine's inhibitory action on sulfate uptake of terrestrial plants,
and other researchers found the intake and enrichment of OPs by
aquatic organisms is generally lowered by non-low level DOMs
(Boehm and Quinn, 1973; Haitzer et al., 1998; Hassett and Anderson,
1982; Landrum et al., 1987). For example, Kukkonen and Oikari
(1991) reported that the bioconcentration factors (BCFs) of benzo[a]
pyrene on water flea decreases when the DOM concentration increases
in 20 natural waters. A potential mechanism of this bioavailability influ-
ence by DOMs is the binding/adsorption effect of OPs to DOMs. The free
OPs in thewater system aremore likely to be concentrated by organism
uptake, whereas the binding parts are not, and therefore, the DOM-
bond OPs show less toxicity effects (Agnola et al., 1981; Burns et al.,
1996; Johnson and John, 1999; Krop et al., 2001). In other words,
obtaining the partitioning ratio of a certain OP between the DOMs and
thewater phase, whichwas the binding constant—Kdoc, can be regarded
as a basic step for further analysis of its environmental fate.

Typically, some OPs of priority concern, including polycyclic aro-
matic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), dichlo-
rodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs),
and di‑(2‑ethylhexyl) phthalate (DEHP), were measured experimen-
tally since the early 1970s (Backhus and Gschwend, 1990; Carter and
Suffet, 1983; Carter and Suffet, 1982; Chiou et al., 1987; Chiou et al.,
1986; Cho et al., 2002; Khan, 1973; Krop et al., 2001; Lafrance et al.,
1991; Laor and Rebhun, 1997; Mackay et al., 2010; Rav-Acha and
Rebhun, 1992; Traina et al., 1989). Currently, the Kdoc values of emerg-
ing organic pollutants, such as endocrine disrupters, pyrethroids, phar-
maceutical and personal care products (PPCPs), have been investigated
(Delgado-Moreno et al., 2010; Lee et al., 2011;Maoz and Chefetz, 2010).
Although plenty of experimental methods for the determination of Kdoc

are available, it is yet hardly to experimentally measure the Kdoc of hun-
dreds of thousands of new compounds, which are being synthesized for
commercial application each year. As a result, model prediction is often
utilized to predict the Kdoc values of certain compounds based on the
existing Kdoc values of OPs with similar molecular structures. Presently,
the proposed quantitative structure-activity relationship (QSAR)
models for Kdoc can be classified into three categories: (1) models
based on physicochemical parameters, such as the linear free energy re-
lationship (LFER) model that primarily uses the octanol-water partition
coefficient (Kow) as input variable, the linear solvation energy relation-
ship (LSER) model that uses water solubility (s) as input variable, and
other linear relationship models that use other parameters, such as ab-
sorptivity; (2) models based on solvation theory, such as Flory-Huggins
solvation theory; and (3)models based on structure parameters such as
fragment constants or topological indices, such as molecular connectiv-
ity indices (MCIs) (Krop et al., 2001; Lu et al., 2000a; Yu et al., 1990). The
majority of existing models are built with data of specific OP classes
with abundant congeners, such as PAHs and PCBs, thus they cannot suc-
cessfully predict the Kdoc values of other OPs, especially emerging OPs.
Therefore, building a prediction model, which is suitable for OPs of var-
ious classes, is an important orientation for the Kdoc model study.
Among all of the models, the Kow-based LLER-Kdoc model has the sim-
plest form and thus is most widely used. However, due to the difficulty
in obtaining experimental Kow values of new compounds in time, the
applicability of the Kow-Kdoc model is limited. Neale proposed a pp-
LFER Kdoc model mainly based on disinfection by-products and few
other chemicals like halogenated alkanes and alkenes (Neale et al.,
2012). Although its potential application range is a little wider com-
pared to the single OP class models, the difficulty in obtaining accurate
model parameters is still a limitation. The Flory-Huggins models have
a clear theory, whereas the majority of the parameters are hard and
complicated to calculate or quantify, which also limits their applicabil-
ity. MCIs are a group of molecule descriptors based on Randic's
branching theory.Modified by Kier andHall (1986),MCIs quantitatively
describe the topological relationships of the non‑hydrogen structure of
organic compounds to comprehensively reflect their molecular shapes,
volumes and electrical information (Li et al., 2000; Lu et al., 2000c). Due
to the relatively large amount of structural information MCI contains
and the ready accessibility of MCI values for all chemicals (MCIs can
be calculated as long as themolecular structure is known),MCIs have al-
ready been utilized in predicting several physicochemical properties in-
cluding Henry's law constant, Kow, solubility, BCF, Kdoc and a similar
binding constant—Koc (soil organic matter) (Lu et al., 2000c;
Nirmalakhandan and Speece, 1988; Pavan et al., 2006; Sabljić and
Protić, 1982). Because MCIs are very easy to calculate and the affiliation
property of any organic molecule theoretically depends on its structure,
theMCI-Kdocmodel is potentially applicable for almost anyOPs. Besides,
taking steady structural related parameters like MCI as direct model in-
puts can also erase the inconvenience and the deviation resulting from
secondary calculation when the parameters in other models need to
be calculated first from chemical structures, especially for emerging
OPs.

For the construction ofMCI-based binding constantmodels, Sekušak
and Sabljić reported that there were clear linear relationships between
the low-order path-type MCIs and the corresponding Koc values of the
acetanilides, amides, dinitroanilines, and triazoles (Sabljic, 1987;
Sekušak and Sabljić, 1992). Therefore, it was possible to build the Koc

prediction models upon theMCIs for these OPs. Sabljic then established
a linear MCI-Koc model for four groups of OPs with experimental Kdoc

values and calculated 1χp values, and the model was adjusted by
semi-empirical variables (Sabljic, 1987). In regard to the MCI-Kdoc

models, Sabljic found that the Kdoc values of 26 PCBs and their 1χP

showed a good parabolic relationship (Sabljić, 1991), whereas Evers
and Velzen showed that the Kdoc values of polychlorinated
dibenzopdioxins (PCDDs) had good linear relationships with their 1χP

V

or 2χP
V (Evers et al., 1991). Although those proposed MCI-Koc/Kdoc

models had good regressions, their applications were quite limited
and applicable within nearly only one group of OPs. To broaden the ap-
plicability of the MCI-based binding constant models, Lu and her co-
workers analyzed the relationship between Koc values and the MCIs of
330 OPs and found that a good multiple linear regression model can
be established for nonpolar OPs, whereas polarity correction factors
are needed for polar OPs (Lu et al., 1999b; Lu et al., 1999c; Tao and Lu,
1999). In addition, Lu also raised two MCI-BCF models, which are
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applicable formultiple OP groups (Lu et al., 1999a, 2000b). According to
the above studies, MCI models showed advantages for the prediction of
the physicochemical properties for multiple OPs. Conversely, there are
presently no sufficient Kdoc models based onmulti-class OPs. Therefore,
the objective of our study is (1) to build MCI-Kdoc prediction models
suitable for multiple OP groups and (2) to test the model robustness
and compare them with the most commonly used Kow-Kdoc models.

2. Materials and methods

2.1. Data collection and calculation

Experimental Kdoc values from 1973 to 2013were first selected from
the SCI publication database. Only the Kdoc values where the studied
compound was predominately neutral were considered for model con-
struction, thus compounds like Diquat (dichloride) are disregarded. In
the end, the dataset contains 202 OPs of more than ten OP groups in-
cluding PAHs, PCBs, polybrominated diphenyl ethers (PBDEs), phenols,
halogenated PAHs (X-PAHs), PCDDs, organic chlorine pesticides (OCPs),
amides, pyrethroids, triazines, etc. Among 202 OPs, a total of 127
chemicals had more than one reported Kdoc values based on different
methods and conditions. Based on previous study suggestions (Lu
et al., 1999a, 2000a, 2000b, 2000c; Tao and Lu, 1999; Tao et al., 2000,
2001) and relatively small differences between the median and the av-
erage logKdoc values (0.08 log unit on average for 70 OPs with over two
Kdoc), the typically used median values of each chemical were then cal-
culated and used for model construction to minimize the variations of
Kdoc values associated with experiment conditions (e.g. methods, tem-
perature, and pH). The Kdoc values are normally shown in the log-
form, and the logKdoc (median) values of all 202 OPs ranged from 0.95
to 7.14. Furthermore, the relative logKow values for each of the OPs
were also selected (shown in Supporting Information, SI). The structural
formulas of all OPs were searched in the Pubchem database (https://
www.ncbi.nlm.nih.gov/pccompound) and then 22 common MCIs (0χP,
1χP, 2χP, 3χP, 4χP, 5χP, 6χP, 3χC, 4χPC, 5χPC, 6χPC and 6χCH; 0χP

V, 1χP
V, 2χP

V,
3χP

V, 4χP
V, 5χP

V, 6χP
V, 3χC

V, 4χPC
V , 5χPC

V , 6χPC
V and 6χCH

V ) of each OPwere calcu-
lated as follows.

mχ ¼
Xn
j¼1

Ymþ1

i¼1

δi

 !−0:5

; mχV ¼
Xn
j¼1

Ymþ1

i¼1

δVi

 !−0:5

ðAÞ

where δ is the atomicdelta value, δV refers to thevalence atomicdelta value,
i indicates the non‑hydrogen atomnumber, andm and n correspond to the
connectivity level and the subgraph number, respectively (Lu et al., 1999a;
Lu et al., 2000c). There are fourMCI subclasses according to their subgraph
differences—path, cluster, path/cluster and chain-type indices (Li et al.,
2000). Although there is no specific corresponding physicochemicalmean-
ing for each subclass, a number of studies suggest that each subclass de-
scribes a different aspect of the structure properties. Low-order path-type
indices generally describe more about molecular size, surface and volume
with 1χP and 0χP

V are believed to relate well with molecular surface area
and volume, respectively. The normal cluster and path/cluster-type indices,
such as 3χC and 4χPC, mainly describe the extent of different branching in a
molecule and they are very sensitive when there are branching changes.
Furthermore, 4χPC also contains informationof substitutionpattern onben-
zene rings. In addition, the chain-type indices like 6χCH reflect the rings in
the molecule and the substitution patterns on these rings (Kier and Hall,
1986; Sabljić, 1991). Technically, those indices were calculated in Wintox
software by Jorgensen and Sorensen for construction of the model
(Jorgensen et al., 1997).

2.2. Model development

Based on previous studies (Lu et al., 1999a; Lu et al., 2000b; Lu et al.,
2000c; Lu et al., 1999c; Tao and Lu, 1999), the following steps were set
for the construct and testMCI-Kdocmodels in this study: first, 22 indices
were selected by stepwise multiple linear regressions to build the MCI-
Kdocmodel; second, the obtained regressionmodels from step onewere
evaluated by the fitting results and then modified with other parame-
ters if necessary; and third, the stability and sensitivity of the models
were tested to further evaluate the model performance. The stability
tests were conducted using a modified Jackknifed method (Lu et al.,
2000a; Tao et al., 2000; Tao et al., 1999). The basic idea of the method
is to randomly remove a group of the modeling data in the model con-
struction, and then compare the deviations of each parameter among
the original model and different removal choices to evaluate the robust-
ness of themodel and its influence factors. Finally, the MCI-Kdoc models
were comparedwith themost commonly usedKow-Kdocmodel for judg-
ment of the advantage. All of the data simulation and analysis were con-
ducted by IBM SPSS 20.0.

3. Results and discussion

3.1. Development of overall MCI-Kdoc models

In the previous studies (Lu et al., 1999a; Lu et al., 2000b; Lu et al.,
2000c; Lu et al., 1999c; Tao and Lu, 1999), there were significantly dif-
ferences between polar and nonpolar OPs when establishing some
physicochemical property models (Koc and BCF) based on MCIs. There-
fore, our studies utilized their classification method to divide the 202
OPs into 104 nonpolar OPs, which only have carbon (C), hydrogen
(H) and halogen (X) in their molecular structure and 98 polar OPs as
the rest of the tested OPs. However, to test whether there is a same dis-
crimination pattern for polar and nonpolar OP groups in MCI-Kdoc

models, an overall MCI-Kdoc model based on all 202 compounds was
first established (Eq. (1)). In addition, the corresponding Kow-Kdoc

model was built for a comparison purpose (Eq. (2)). However, there
were no reported Kow values for 9-formylanthracene, anthraquinone,
and napropamide, and therefore, the Kow-Kdoc model is based on the re-
maining 199 OPs.

log10Kdoc ¼ −0:7161 χP þ 0:4243χP þ 9:996χCH

þ 0:4870χV
P−0:0866χV

PC þ 1:193;n
¼ 202; adj−R2 ¼ 0:725; SEE ¼ 0:705 ð1Þ

log10Kdoc ¼ 0:598 log10Kow þ 1:441;

n ¼ 199; adj−R2 ¼ 0:740; SEE ¼ 0:689
ð2Þ

As analyzed by the stepwise multiple linear regression, 5 indices
were selected for the MCI-Kdoc model (selected MCI values for each
chemical are shown in SI). These indices cover both general (1χP, 3χP,
and 0χP

V) and local (6χPH
V and 6χCH)molecular information of the studied

OPs. As mentioned before, 1χP (molecular surface area), 0χP
V (molecular

volume) and 6χCH (rings & substitution patterns on the rings) have rel-
atively clear structural meanings, whereas 3χP and 6χPC

V may be related
to molecular density and branches (Kier and Hall, 1986). The selection
of these indices indicates these structural information of OPs all influ-
ence on their binding ability to DOM. However, MCIs are non-
dimensional parameters and do not have specific physicochemical
meanings, so the coefficients in Eq. (1) do not necessarily reflect the rel-
atively contribution of the chemical properties on the binding abilities.
Although the coefficient of 6χCH is remarkably high, the 9.99 6χCH

term is generally of same order of magnitude with other terms due to
the fact that the 6χCH values are quite small (0–0.34 for studied OPs)
compared to other MCIs. In Sabljic's study based on singleMCI, andmo-
lecular surface area (indicated by 1χP) was found to have a parabolic re-
lationship with Kdoc values (Sabljić, 1991), however, in our study, the
negative coefficient indicates that the molecular surface area may
have overall a negative contribution to Kdoc values when other

https://www.ncbi.nlm.nih.gov/pccompound
https://www.ncbi.nlm.nih.gov/pccompound
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structural information indices are also considered. This is in line with
Lu's two MCI-Koc models (Lu et al., 2000a; Lu et al., 2000b).

The modeled residual values as well as the errors on all coefficients
of both equations are listed in Table S1 of the Supplementary materials,
and the relationships between the original and modeled values are
shown in Fig. 1. For Eq. (1), the average value of the absolute residuals
is 0.50 log-unit (with 36.6% OPs over 0.50 log-unit), and the average re-
sidual of Eq. (2) is 0.53 log-unit (with 45.0% OPs over 0.50 log-unit).
When comparing the two models, the residual level of the MCI-Kdoc

model is slightly better while the Kow-Kdoc model has little advantage
in fitting effect (marked by the adjusted coefficient of determination
(adj-R2) value and standard error of the estimate (SEE)) and model
complexity. Therefore, the overall MCI-Kdoc model is not yet a potential
substitution option for the corresponding Kow-Kdocmodel. Furthermore,
the fittings themselves for bothmodels are not sufficient enough for the
prediction of Kdoc values, as indicated by the scatter points away from
the Y = X reference line within the whole logKdoc range (Fig. 1a and
b). Therefore, certain modifications should be conducted for the overall
MCI-Kdoc model.

To modify the MCI-Kdoc model, the differences between the polar
OPs and the nonpolar OPs raised by Lu (Lu et al., 1999a, 2000b, 2000c,
1999c; Tao and Lu, 1999) were first considered. However, unlike their
MCI-Koc model studies, the polar spots and the nonpolar spots in our
MCI-Kdoc model do not show a clear distributional difference around
the Y=X line (p N 0.01). On one hand, this finding is probably observed
because the interactions between the OPs and DOMs are more intense
than the soil organic matters since the polarity of DOMs are stronger
(Krop et al., 2001). On the other hand, the definition of nonpolar OPs
in these studies were not strict; compounds with halogen atoms, such
as PCBs and X-PAHs, were classified as nonpolar and it might cause
bias because the electron-withdrawing properties of the chlorine and
bromine atoms in OPs are believed to infect their abilities to bind
Fig. 1. The relationships between the experimental and
DOMs (Nuerla et al., 2013). Therefore, thepattern in theMCI-Kocmodels
might not be suitable for our Kdoc study, and the modification of MCI-
Kdoc model was not separated for polar and nonpolar groups in this
study. However, the polarity correction factor (PCF) of the polar MCI-
Koc model raised by Lu (Lu et al., 1999a, 2000b, 2000c, 1999c; Tao and
Lu, 1999) was still considered in our modification for all OPs since the
polar functional groups in both polar and nonpolar OPs were believed
to be responsible for the deviation of the Y = X line.

The modification of PCF followed two assumptions: (1) the degrees
of binding influence depend upon polar functional groups, and each
polar group needs an independent factor to describe its contribution
to the Kdoc values; and (2) the factors are attributed by the polar func-
tional groups and their corresponding amounts. By analyzing the mo-
lecular structure of 202 OPs, 15 factors, including factors of hydroxyl
(\\OH), amino (\\NH2, \\NH\\, \\N\\), azo/nitrile (\\N_/\\CN),
nitro (\\NO2), carbonyl (\\CO\\), aminocarbonyloxy (\\NCOO\\),
oxycarbonyl (\\COO\\), carboxyl (-COOH), oxy(\\O\\), sulfur(\\S\\),
phosphor(\\PO3) and four halogens (\\F, \\Cl, \\Br, \\I) were
screened and then introduced to the original MCI-Kdoc model. In this
way, the model was revised as follows:

log10Kdoc ¼
X
i

ai∙χi þ
X
i

ni∙Fi þ c ðBÞ

where χi is the MCI selected in the original model and ai refers to the
new coefficient of each MCI; Fi indicates the PCF of the i-th polar func-
tional group and it is calculated as the coefficient of ni, where ni is the
number of polar functional groups i in a molecule, and c is the intercept
of the model.

After introducing the PCFs in Table 1, the new MCI-Kdoc model,
namely, theMCI-PCF-Kdoc model, was obtained and is shown in Eq. (3).
modeled log Kdoc values of Eqs. (1), (2), and (3).



Table 1
The PCF values of the polar functional groups in Eqs. (3), (6), and (7).

Polar functional groups
PCFs

Eq.(3) Eq.(6) Eq.(7)

\\OH −0.063 −0.221 −0.052
\\NH2/\\NH\\/\\N −0.498 −0.435 −0.464
\\N=/\\CN 0.014 −0.177 0.025
\\NCOO\\ −1.227 −1.782 −1.172
\\COOH −2.409 −2.391
\\COO\\ −0.736 −0.279 −0.725
\\CO\\ −0.190 0.103 −0.181
\\O\\ −0.046 −0.112 −0.052
\\S\\ −0.022 0.236 −0.057
\\F −0.436 −0.283 −0.42
\\Cl 0.125 0.154 0.129
\\Br 0.345 0.142 0.353
\\NO2 −0.076 −0.198 −0.015
\\PO3 2.915 2.872
\\I −0.124 0.081 −0.102
μ −0.02
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Compared with Eq. (1), the coefficients of 0χP
V, 1χP and 6χCH in

Eq. (3) changed evidently with a decrease in their absolute values.
These decrease is probably due to the fact that the selected polar func-
tional groups also partly reflect information like molecular volume
and substitution numbers on the rings, therefore the contributions of
these MCI values on the Kdoc values decreases when substitutional
groups with larger volumes or commonly found on the rings like chlo-
rine and bromine are introduced.

Considering the fitting effects, the PCF-modified model shows a
higher fitting effect to the original one with the adj-R2 rising from
0.725 to 0.815 and the SEE declining from 0.705 to 0.577. As shown in
Fig. 1(c), the spots of predicted and experimental values aremuch closer
to the Y=X line as only 25.7% and 7.4% of OPs having an absolute resid-
ual value over 0.50 and 1.0 log-unit, and some obvious outliers in the
original model are clearly modified. Similarly, for the comparison of
the Kow-Kdoc model, the MCI-PCF-Kdoc model also performs much bet-
ter. The evidence of these examples above demonstrates that the PCF
modification is beneficial for the precision of the MCI-Kdoc prediction.
However, there are still some non-negligible outliers of the reference
line in Fig. 1(c), which indicates that the precision and applicability of
the MCI-PCF-Kdoc model may still be limited to some extent.

log10Kdoc ¼ 0:2111 χP þ 0:1223χP þ 2:916χCH

þ 0:0610χV
P−0:0676χV

PC þ 1:202þ
X
i

ni � Fi;n

¼ 202; adj−R2 ¼ 0:815; SEE ¼ 0:578 ð3Þ
Table 2
Data information of the OPs with absolute residuals over 1.0 log-unit of Eqs. (1) and (3).

Compound Class Residuals

Eq. (1) Eq. (3)

Carbamazepine Amides −1.39 −1.10
Metolachlor Amides −1.61 −1.68
BDE-99 PBDEs −1.29 −1.03
2,3,7,8-TCDD PCDDs 1.53 1.47
γ-HCH Others −2.32 −2.17
Chloranil Others 1.44 1.52
Acenaphthylene PAHs −0.79 −1.09
PCB-126 PCBs 1.28 1.16
PCB-116 PCBs 1.93 1.12
PCB-33 PCBs 1.92 1.74
1‑Naphthol Phenols 1.90 1.08
p‑tert‑octylphenol Phenols 1.24 1.26
1,2,3-TCB X-PAHs −1.12 −1.19
Carbazole Heterocycles 0.95 1.19
Thiabendazole Heterocycles −0.91 −1.22
To figure out the application condition of the MCI-PCF-Kdoc model,
the 15 OPs, whose absolute residual values were over 1.0 log-unit, are
listed in Table 2 as well as their detailed experimental conditions. For
14 out of 15 contaminates, the absolute residuals of the original MCI-
Kdoc model are also above or very close to 1.0 log-unit, which indicates
that the PCFs are not very effective for these compounds. Therefore,
the data sources of these Kdoc values were examined, and then, the un-
changed outliers were assumed to result from (1) the molecular struc-
ture and (2) the experimental conditions.

3.1.1. The molecular structure
The ineffectiveness of PCFs for OPs like

2,3,7,8‑tetrachlorodibenzo‑p‑dioxin (2,3,7,8-TCDD),
γ‑gexachlorocyclohexane (γ-HCH, lindane), and chloranil, might be at-
tributed to themolecular structure. Since 2,3,7,8-TCDD and chloranil are
indeed nonpolar substances that are highly symmetrical, the extent of
the binding influence of the chlorine and oxygen atoms in their mole-
cules may differ from other OPs. Studies have already shown that
there are obvious differences in some physicochemical properties (like
melting point and vapor pressure) of HCH isomerides (Willett et al.,
1998). Clearly, these differences come from different geometry configu-
rations. However, sadly, neitherMCIs nor PCFs are capable of describing
the geometric configuration of the isomerides. Therefore, the PCF-
modified model cannot further predict the Kdoc values of lindane com-
pared to the original model.

3.1.2. The experimental condition
It was proven that different experimental conditions resulted in var-

ious Kdoc values of even the same OPs. The most concerning conditions
mainly consist of experimentalmethods and DOM species. For instance,
Krop and his co-workers compared the logKdoc-logKow relationships of
PAHs by various experimental methods and they found that the Kdoc

values measured by FQ and the revised-phase method (RP) were
slightly higher than the values by HPLC (Krop et al., 2001). Additionally,
Kukkonen and Pellinen (1994) reported that the Kdoc values by the Di-
alysis method were generally higher than the solvent extraction (LLE)
method. However, these method comparison studies mainly concen-
trate on limited OP groups such as PAHs and PCBs, whichmakes simply
adopting their results to other OPs with potential different binding per-
formance inappropriate. Furthermore, so far only few methods have
been evaluated and compared, and there lacks a comprehensive evalu-
ation of experimental methods. As a result, the current study does not
exclude any experimental method.

For the influences of the experimental DOMs, Krop et al.(2001) con-
cluded that the Kdoc values by commercial DOMs were typically higher
DOM Method Number of studies

Natural Dialysis Single
Natural Batch Single
Both Dialysis/SPME Three
Natural AK Single
Both AS Single
Both UVspectr Single
Both RP Single
Commercial SPME Single
Commercial Dialysis Single
Natural CS Single
Natural FQ Two
Commercial FQ Single
Both AS Single
Commercial HPLC Single
Both SPE Single



Table 3
Data information of outliers in Eqs. (4) and (6).

Compounds Groups Residual of
Eq. (4)

Residual of
Eq. (6)

Method Number of
studies

Chloranil Others 2.09 1.58 UVspectr Single
Carbazole Heterocycles 0.97 1.20 HPLC Single
Ameline Triazines 0.15 1.10 EK Single

231Y.-L. Li et al. / Science of the Total Environment 670 (2019) 226–235
than natural DOMs for the sameOPs. Furthermore, they also found that the
binding mechanisms for the same OP to seawater DOM clearly differed
from the freshwater DOM. As mentioned before, to minimize these Kdoc

value deviations of various researchers and experimental conditions, the
median values were utilized in this study. However, for OPs with only
one experimental Kdoc study or Kdoc value reported, the potential bias
resulting from specific conditions cannot be controlled, which then may
significantly influence the model development. As shown in Table 2, the
Kdoc values of almost all of the 15 OPs came from a single independent
study, and both the DOMs and themethods utilized in these studies varied
a lot and therefore the deviations of experimental conditions here are also
not negligible. Because of the relatively limited studies, the reasons for the
unchanged outliers are unlikely to be confirmed yet.

Despite the unchanged outliers, the MCI-PCF-Kdoc model can still be
considered a useful prediction tool for two reasons. First, themodel pro-
vides relatively good regression parameters; and second, there is a large
dataset containing various OP groups and experimental conditions, es-
pecially compared with the existing MCI-Kdoc models for specific OPs.
However, in our current dataset, the DOMs utilized are from various
sources including different natural water bodies (ponds, rivers, lakes,
sea, etc.) and some commercial sources like Aldrich Humic Acid (HA),
to further control the deviation of the experimental conditions and to
raise the accuracy and applicability of the MCI-Kdoc model for specific
conditions, the most commonly used DOM in the literature, Aldrich
HA, was then chosen for the development of a more specific MCI-Kdoc

model in the following section.

3.2. Development of MCI-Kdoc models for Aldrich HA

Through searching the original dataset, 132 OPs with Aldrich HA as
binding DOMwere selected and these compounds belong to 10 groups
including PAHs, PCBs, PBDEs, phenols, X-PAHs, PCDDs, OCPs, triazines
and heterocyclic compounds. Similar to the overall models, the median
values of 29 OPs, which have more than one Kdoc value, were taken for
the stepwise regression, and the logKdoc range of the Aldrich HA dataset
is from1.69 to 7.28. According to the stepwise regression, 7 indices (0χP,
1χP, 3χP, 3χC, 6χCH, 2χP

V and 4χP
V) were selected for the Aldrich HAmodel

(adj-R2 = 0.725 and SEE = 0.705). However, the multicollinearity of
thoseMCI could affect themodel efficiency. Therefore, those group indi-
ces were partly discarded in further model development. To utilize the
structure information of the substances to the greatest extent, 5 indices
with most relatively clear structural meanings for both molecular and
local levels (1χP, 0χP

V, 3χC, 4χPC and 6χCH) were then chosen for a multi-
ple linear regression instead (Eq. (4)). Additionally, the Kow-Kdoc model
of Aldrich HAwas also developedwith 9-formylanthracene and anthra-
quinone excluded (Eq. (5)).

log10Kdoc ¼ −0:3461 χP−0:4383χC þ 0:1544χPC þ 11:2826χCH

þ 0:4960χV
P þ 0:584;n

¼ 132; adj−R2 ¼ 0:815; SEE ¼ 0:617 ð4Þ

log10Kdoc ¼ 0:065 log10Kow þ 1:935;

n ¼ 130; adj−R2 ¼ 0:813; SEE ¼ 0:625
ð5Þ

Similar to Eq. (1), Eq. (4) shows both general and local molecular
properties of OPs contribute to their Kdoc, and despite the high variation
coefficient of each MCI, each term in Eq. (4) is also generally within the
same order of magnitude.

For Eq. (4), the absolute residuals (data shown in SI) of 31.8%
modeled OPs are over 0.50 log-units and the average residual is 0.46
log-unit. For Eq. (5), 42.4% of the residuals are over 0.50 log-unit with
an average residual of 0.50 log-unit. Transversely evaluating the two
equations with adj-R2, SEE, and residual levels, the regression effect of
theMCI-Kdoc model for Aldrich HA is only slightly better than the corre-
sponding Kow-Kdoc model. Moreover, when comparing the outliers with
residuals over 1.0 log-unit, the respective 12 outliers of the two equa-
tions are almost completely different, which demonstrates that Eq. (4)
may be less valid than Eq. (5) for some specific compounds. However,
sinceMCI values are solid and easy to accesswhereas Kow values always
need to be determined, the uncertainty of Eq. (4) is much less. The ver-
tical comparison of Eqs. (1) and (4) shows that the AldrichMCImodel is
indeed more efficient than the overall model. Meanwhile, the observa-
tion of the modeled and experimental Kdoc relationship (Fig. 1) shows
that the distribution of the outliers is also within the entire range of
Eq. (4), especially for the polar OP spots. As a result, PCFs were also in-
troduced for the Aldrich HA MCI-Kdoc model. Compared to Eq. (3), 13
factors were added to the MCI-Kdoc model of Aldrich HA except for car-
boxyl (\\COOH) and phosphate (\\PO3) since no OPs contain these
groups. The PCFs are listed in Table 1 and the MCI-PCF-Kdoc model for
Aldrich HA is as follows:

log10Kdoc ¼ 0:2801 χP þ 0:0563χC−0:1644χPC þ 4:8876χCH

þ 0:1640χV
P þ 0:435þ

X
i

ni � Fi;n

¼ 132; adj−R2 ¼ 0:907; SEE ¼ 0:438 ð6Þ

When comparing the PCF-modified and non-modified models, the
adj-R2 increases from 0.815 to 0.907 and the SEE declines from 0.617
to 0.438. The residual analysis (shown in SI) shows that the number of
OPs with residuals over 0.50 and 1.0 log-unit declines to 24 (18.2%)
and 3 (2.3%), whereas the average residual declines to 0.31 log-unit.
As also shown in Fig. 1, after the PCFs were added, the distribution of
the spots ismuchmore centered to the reference line, and thus, the pre-
cision of the model is clearly improved. The two MCI-PCF-Kdoc models
were also compared for the percentage of outliers, where the Aldrich
model is evidently lower than the overallmodel. It indicates that the dif-
ferent DOM sources impact the overall model to some extent, and by
restricting the DOM, the precision of the prediction model increases
markedly. In our current study, the effect of various DOM is only con-
trolled by choosing AldrichHA as a representative since it is dominating
in Kdoc studies. Other DOMchoices in the literature either have very lim-
ited Kdoc studies or simply natural extracted which have little informa-
tion on DOM properties, so none DOM parameters were further
introduced to modified the overall MCI-PCF model. Future studies
which interested in other specific DOMs could also consider the estab-
lishing a DOM specific MCI-PCF model when there are enough data,
and ultimately establishing a MCI-DOM model.

Even though the majority of the outliers are modified in Fig. 1f, the
model prediction effects for some OPs evidently decreases. Therefore,
the detailed experimental conditions of the outliers in Eq. (6) were
also conducted (Table 3) for further analysis on the model effects.

Regarding the aspect of experimental conditions, all three substances
listed in Table3were only reported in single studies, andmore importantly,
theUV- spectrummethodof the chloranil and the electrokinetic chromato-
graph (EK) method of ameline are not used in other studies. In this case,
until a detailed comparison of all experimental methods based on various
OP classes, or at least for these outlier compounds, the extent ofmethod as-
sociated influence on our model cannot be confirmed and the deviations
cannot be eliminated. Meanwhile, in the aspect of molecular structures,
the three OPs are all planar molecules with certain symmetries and conju-
gated systems (Fig. S1 in SI). Therefore, the polar groups in their structure
may contribute less or unequally to their binding abilities while the



Fig. 2. Jackknifed adj-R2 values for pattern (b) of the overallmodels 1-Amides, 2-PBDEs, 3-
PCDDs, 4-OCPs, 5-PAHs, 6-PCBs, 7-Hormones, 8-Phenols, 9-Pyrethroids, 10-Triazines, 11-
X-PAHs, 12-Heterocycles, 13-Others.

Table 4
The Jackknifed R2 values of both patterns for the overall Kdoc models.

Method Model R2 Jackknifed R2

Average Range CV

The overall Kdoc models
Pattern (a) MCI-PCF 0.815 0.817 0.796–0.854 0.017

Kow 0.740 0.740 0.699–0.759 0.024
Pattern (b) MCI-PCF 0.815 0.816 0.800–0.836 0.011

Kow 0.740 0.741 0.716–0.769 0.018

The Aldrich HA Kdoc models
Pattern (a) MCI-PCF 0.907 0.909 0.896–0.920 0.008

Kow 0.813 0.812 0.788–0.829 0.020
Pattern (b) MCI-PCF 0.907 0.908 0.888–0.936 0.012

Kow 0.813 0.812 0.800–0.837 0.012
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molecular structures themselves are more important. Especially for
ameline, the nitrogen dominates in its molecule, and thus the excessive
PCFs (up to six PCFs) for ameline is probably responsible for the increase
of the residuals. Careful attention should be paid for these compounds
when applying Eq. (6).

Conclusively, the PCF-modified MCI-Kdoc model performed well in
the Kdoc values regression for the Aldrich HA with multiple OP groups.
Compared with the commonly used Kow-Kdoc model, the accuracy, the
variable availability, and the applicability of the MCI-PCF-Kdoc model
are all better. Additionally, compared with the overall MCI-PCF-Kdoc

model, the specificity of the Aldrich model is much stronger. In this
case, for DOMs that are more similar to Aldrich HA in properties and
characteristics, the Aldrich HAmodel could a better choice in predicting
the Kdoc values for new compounds.

3.3. Modification attempt with the dipole moment

According to the residual discussion for both overall and Aldrich HA
models, one potential concern of the PCF-modified MCI-Kdoc models
was that PCFs are not sufficient to describe the influences of the overall
molecular polarity on the binding effects. Tominimize this limitation as
much as possible, dipolemoment (μ), the easiest andmost common pa-
rameter representing molecular polarity, was supplemented into the
MCI-Kdoc models as an attempt. Two scenarios were set for the attempt:
(a) using the dipole moment as a supplement for PCFs; and (b) using
the dipole moment as a substitution of PCFs. The μ-modified attempt
was made for both overall and Aldrich Kdoc models, and the theoretical
μ values of all 202OPswere calculated by theirmolecular structurewith
the Gaussian 09, (2009) using B3LYP/6-31G(d).

For scenario (a), when comparing the pre-μ-modified and post-μ-
modified (Eq. (7)) overall MCI-PCF-Kdoc models, the adj-R2 and SEE
values are nearly unchanged. In addition, the differences between the
pre and post modified regression coefficients are all within 0.06
(shown in SI), and the relative variations of majority of the coefficients
are below 20% except for the coefficients with relatively low values,
such as FNH2, FS, and FNO2. Analysis of the residuals (shown in SI) for
each compound indicates that the largest difference of residuals be-
tween the two models is only 0.08 log-unit, which also demonstrates
that the dipole moment modification is indeed unnecessary for the
overall MCI-PCF-Kdoc model. In fact, the numbers of residuals over
0.50 and 1.0 log-unit are increased after the dipole moment modifica-
tion. For the supplement of the Aldrich HA model, the differences of
the coefficients and the residuals are even smaller with all the outliers
unchanged (coefficients and the residuals shown in SI).

log10Kdoc ¼ 0:2281χP þ 0:1103χP þ 2:8886χCH þ 0:0540

χV
P−0:0646χV

PC−0:02μ þ 1:226þ
X
i

ni � Fi;n ¼ 202; adj−R2

¼ 0:814; SEE ¼ 0:579

ð7Þ
For scenario (b), there were two substitution solutions. The first one
was to replace all of the PCFs with μ in the form of Eqs. (3) and (6), and
the second onewas to reselect all input variables of the Kdocmodel from
all of the MCIs and the dipole moment by a stepwise multiple linear re-
gression. For the Aldrich HA models, the general regression effects (in-
dicated by adj-R2 and SEE) of both solutions were higher than the
original MCI-Kdoc model but still lower than the MCI-PCF-Kdoc model
(shown in SI). Meanwhile, the residual results show that the outlier
numbers of the two substitution models are only slightly less than the
original model, and some non/low-polar OPs like chloranil and carba-
zole are still listed as outliers. Furthermore, the residual value of ameline
increases remarkably from 0.15 log-unit in Eq. (4) to 1.19 log-unit for
both solutions (data shown in SI). The residual increase is probably be-
cause ameline has the highest dipole moment value (10.68 D) of all of
the OPs, which indicates that the μ-substitution attempts are also no
better than the PCF-modified models for some strongly polar OPs. For
these kinds of OPs, the polar properties may not be a main factor of
binding abilities compared to itsmolecular structural properties. Similar
conclusions can also be found for the overall models (coefficients and
the residuals shown in SI).

As discussed above, neither the combination of the dipole moment
with the PCFs nor the dipole moment replacement of the PCFs success-
fully improved the accuracy or the application of the MCI-PCF-Kdoc

models. It is probably because that PCFs themselves have already con-
tain the similar information of molecular polarity that dipole moment
does while the dipole moment is lack of the spatial information of the
functional groups that PCFs contain. Also, since dipole moment value
needs additional calculation which may be inconvenient for some po-
tential users, hence Eqs. (3) and (6) were not revised. However, further
studies on different parameters of the overall molecular polarity are still
suggested for the improvement of the models.

3.4. Robustness and the sensitivity analysis

The robustness and the sensitivity of themodels are important indi-
ces of model effects. The robustness of a model represents the ability of
the estimation features of amodel to remain unchangedwhen there are
minor changes of themodeling conditions (Willett et al., 1998), and the
sensitivity of a model evaluates the contribution of the different vari-
ables to the model estimation.

As mentioned above, a modified Jackknifed method was utilized to
calculate the robustness of the models (Cornish-Bowden and Wong,
1978; Dietrich et al., 1980). This method examines the influences of
the modeling data on model robustness by rebuilding the model serval



Fig. 3. Jackknifed adj-R2 values for pattern (b) of theAldrichHAmodels 1-PBDEs, 2-PCDDs,
3-OCPs, 4-PAHs, 5-PCBs, 6-Phenols, 7-Triazines, 8-Hormones, 9-X-PAHs, 10-Heterocycles,
11-Others.
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times with different groups of data eliminated from original database,
and then comparing the deviations of fitting parameters among the
pre- and post-elimination models (Nirmalakhandan and Speece, 1989;
Tao et al., 2000). It has been widely used in several prediction models
on the properties of OPs (like BCF, Koc, s and EC50) (Nirmalakhandan
and Speece, 1988; Tao et al., 1999; Tao et al., 2002). Based on these stud-
ies, two different elimination patterns were designed to evaluate the
changes of the adj-R2, MCI coefficients and the PCFs and hence to
judge the robustness of the two MCI-PCF-Kdoc models (Eqs. (3) and
(6)) (Lu et al., 1999a; Lu et al., 2000b; Lu et al., 2000c; Tao et al.,
2000). The robustness of their corresponding Kow-Kdoc models were
also tested for comparison. The two elimination patterns are as follows:
(a) elimination by random groups: 15% of themodeling dataset (30 OPs
for the overall models and 20 OPs for the Aldrich models) were elimi-
nated each time and each OP was eliminated at least once and five
times at most; (b) elimination by classes: the modeling dataset was
classified by polar groups (as stated above) and each time a polar
group was eliminated.

For the overall MCI-PCF-Kdoc and the Kow-Kdoc models, the
Jackknifed adj-R2 values of both patterns are listed in Table 4. For both
patterns, the average Jackknifed adj-R2 values of both models are very
close to their corresponding original adj-R2 values, which indicates
that both overall models are robust in general. However, the MCI-PCF
model is more robust than the Kow model since its variable coefficients
(CV) of adj-R2 are lower. Despite the close average of the adj-R2 values,
the deviations of the extreme values for both models are larger, which
suggests the relatively strong influences of certain compounds on the
model robustness. To identify the influences of different molecular
Fig. 4. CV values of the coefficients in Eq
structures on themodel robustness, the Jackknifed adj-R2 values of pat-
tern (b) are plotted in Fig. 2. After the eliminations of the phenol and the
triazine classes, the adj-R2 values evidently drop from the original adj-
R2 (as the reference lines) for both models, and thus, these two OP
groups are considered to play more central roles in the models. For
the MCI-PCF-Kdoc model, the “others” group shows a big impact of the
model accuracy as the adj-R2 value increases significantly after it is
eliminated. Since only the OPs with unique structures that cannot be
classified into an existing group with more than three congeners were
classified as “others”, the differences of the input variables within this
group are indeed much larger. As a result, the general model accuracy
is lowered by these OPs.

Similarly, Table 4 and Fig. 3 demonstrate the changes of the
Jackknifed adj-R2 values of the Aldrich HA models. On one hand, both
models are generally very robust since the CV values are all below
0.02, and more specifically, the MCI-PCF model is slightly steadier
than the Kow model. On the other hand, both models are affected by
some OP classes. For the MCI-PCF model, the phenols also play a more
central part in construction of the model as they do for the overall
model. The reason might come from two areas: (1) the majority of the
Kdoc values of phenols are adopted from single study, therefore the con-
sistency of the data is more guaranteed and less deviation in modeling
can be assumed; (2) the structures of the phenols are quite simple
and nearly contains only one polar group (carbonyl), and hence, the
MCIs together with the PCFs can be more descriptive about their spatial
structures and polarities compared to other OPs. Additionally, similar to
the overall MCI-PCF model, the “others” group also limits the model ac-
curacy of the Aldrich HA model. Actually, the number one outlier,
chloranil, is indeed from this group. Conversely, and slightly different
from the overall Kow model, hormones, phenols and triazines all play
an important role in the Aldrich HA Kow-Kdoc model.

The robustness of all of the coefficients in Eqs. (3) and (6) were also
checked for the two elimination patterns, and the CV values of the coef-
ficients are shown in Fig. 4. For the overall model, the rose plots for both
patterns are generally alike. Themajority of the CV values are below 1.0,
which shows relatively good robustness of these parameters. However,
the CV values of PCFs for some polar groups (S, O, and CN) are quite
high, which indicates that their robustness is comparatively weak in
the model. For the Aldrich HA model, the rose plots are more different
even though the majority of the parameters are still quite stable. For
pattern (a), the coefficient of 3χC has the highest CV value, which may
come from the relatively small values of the coefficient itself. However,
for pattern (b), the CV value of FCO becomesmuch higher than the value
of 3χC. This change comes from the elimination of the “others” group
since carbonyl group is tightly associated with these OPs, which indi-
cates the strong influence of the “others” group on the model.

For the sensitivity analysis of the models, the degrees of modeled
logKdoc changes were evaluated when every input variable changes a
determined extent each time. Since theMCI-PCF-Kdoc models are all lin-
earmodels, the input variables are set to be changed for only one lever—
10%. The sensitivity differences (SD) of each variable are defined as the
s. (3) and (6) for the two patterns.



Fig. 5. Parameter sensitivities of Eqs. (3) and (6).
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average values of |Δ log Kdoc|/ log Kdoc(original) for the evaluation. As
shown in Fig. 5, generally, the two models are much more sensitive to
the MCIs than the PCFs. The 1χP is the most sensitive variable for both
models with the ultimate logKdoc values changing slightly over 4.7%
(4.72% for the overall model and 4.76% for the Aldrich HA) when 1χP

is changed by 10%. For the overall model, no other variables are as sen-
sitive as 1χP, whereas the Aldrich HAmodel is also very sensitive to 0χP

V.
In terms of the PCFs, the shared (relatively) sensitive factors (as the SD
value over 0.5%) for both models are the FCl and FNH2 as chlorine and
amino are among the largest polar groups of the dataset. In addition,
for the Aldrich HA model and since it is not very sensitive to FCO and
3χC, the potential impact of these two low-robust variables are actually
limited.
4. Conclusions

This study constructedKdoc predictionmodels for twodifferent DOM
circumstances, nonspecific DOM and Aldrich HA, with MCIs and PCF
based on Kdoc values of various OP groups for the first time. Compared
to the commonly constructed Kow-Kdoc models and the non-PCF modi-
fied MCI-Kdoc models, both models showed higher regression effects
for the overall and Aldrich HA DOM scenarios, respectively, which indi-
cates relatively good prediction accuracies. By covering various OP
groups in our dataset, the applicability of our models is greatly broad-
ened compared to the existing models that focusing limited OP groups.
Furthermore, since our input parameters are calculated solid numbers
only based onmolecular structures, they aremuch easier to access com-
pared to models based on measured parameters when it comes to the
implication of less studied OPs. As expected, the Aldrich HA model is
more selective and pertinent than the overall model for Aldrich HA-
like DOMs. However, when dealing with other DOMs that are either
less studied or have large characteristic disparities, the overall model
will come in handy. Generally, the robustness and sensitivity tests
showed that the two models are quite robust and they rely less on the
relatively non-robust parameters. In this case, themodels can be consid-
ered effective tools in the Kdoc value prediction. However, the effective-
ness of the two models on some OPs are quite limited, this is probably
due to the discrimination of experimental conditions and molecular
structure. The dipole moment was added to the models as an attempt
to minimize the deviations, but it was not effective enough either to
supplement or to replace the PCFs. However, the addition of other pa-
rameters representing overall molecular polarity and DOM characteris-
tics (when sufficient experimental data is available) is suggested for the
improvement of the models in future studies.
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